Deep Learning Material:
PPTs
3. Probability & Information Theory
Material in PDF
1. Introduction & Linear Algebra.
Recorded Sessions
#UNIT -2 ( Deep Learning PCA)
#UNIT-3 (Fundamentals of Deep Learning)
#UNIT -3 Regularization (Introduction, Parameter Norm penalties, Constraint based, Under constraint based penalization)
#UNIT -3 Regularization (Data Augmentation, Noise Robustness)
#UNIT-3 Regularization (Multi Tasking, Early Stopping, Sparse Representation, Bagging and Other Ensemble models)
___________________________________________________________
Internships:
Placements:
1. Martdocks CSA 28.9.2023
2. Merkle Sokrati - Associate Business Analyst (2020 - 2024)
5. DP Worlds
No comments:
Post a Comment